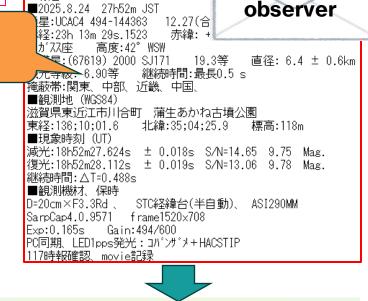
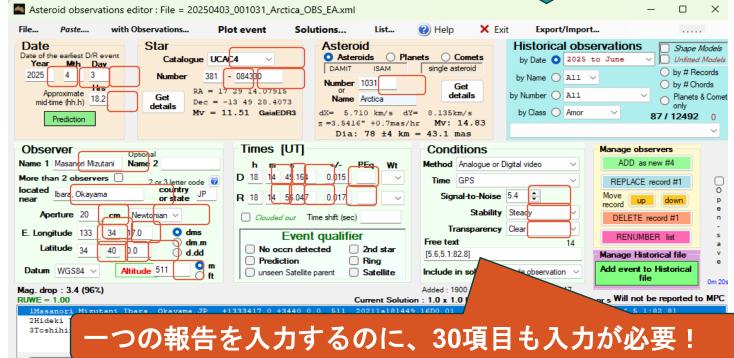

観測報告収集システムROREMのまとめが示す "最適なカメラ設定値"

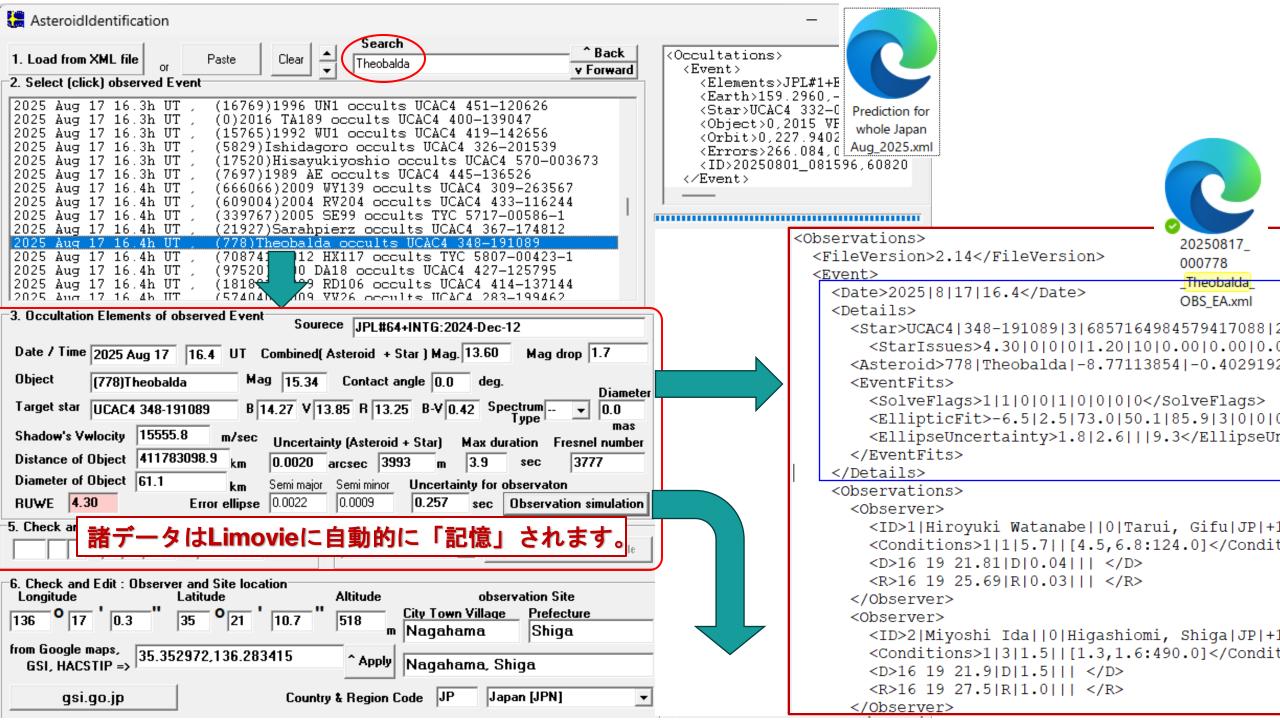
宮下和久

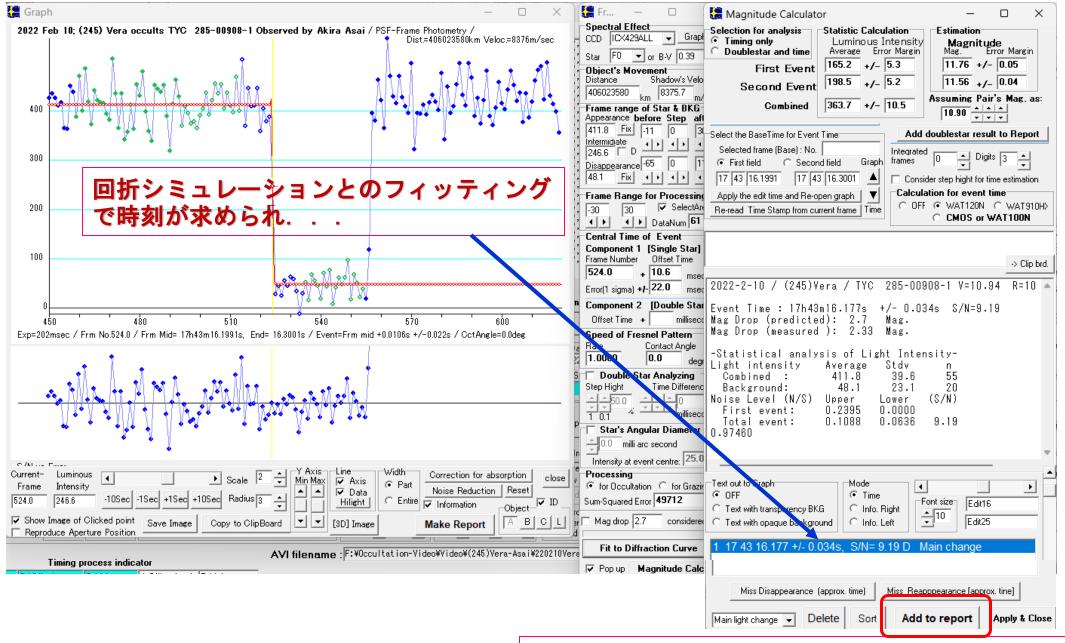

日本では… 数年前までは…


ある程度の幅を持った書式のテキストで報 告されていました.

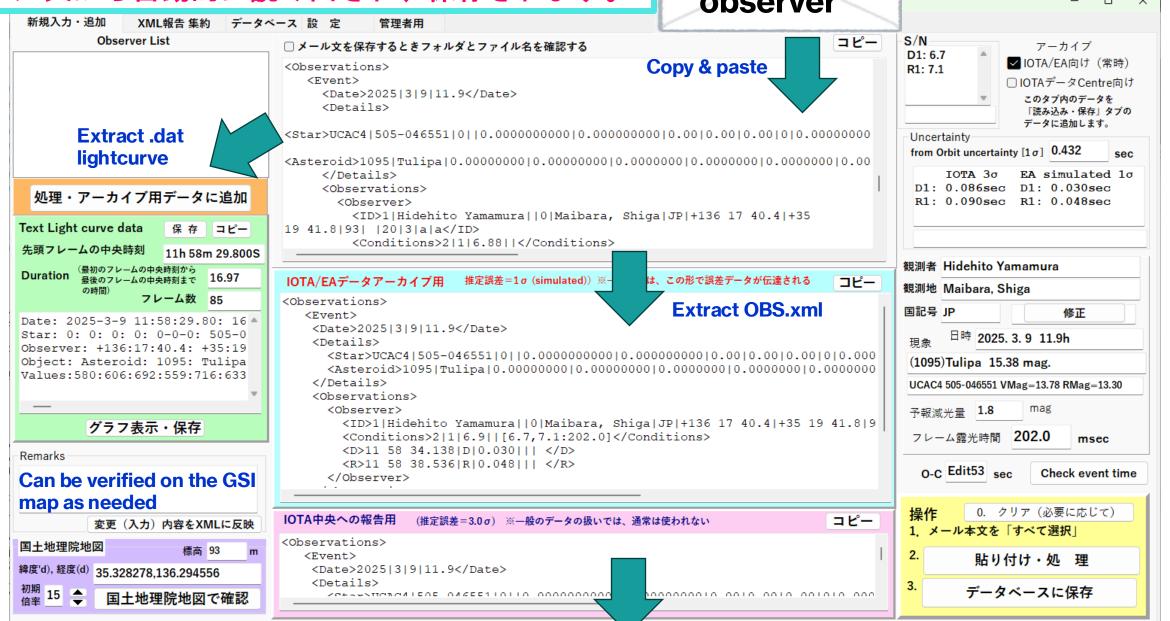
地域コーディネーターは、そこからOCCULTに手入力してからIOTAに報告していました。


最近、観測報告数が激増しています。そして...


⇒ 収集業務も時間がかかり、困難を極めるようになりました.

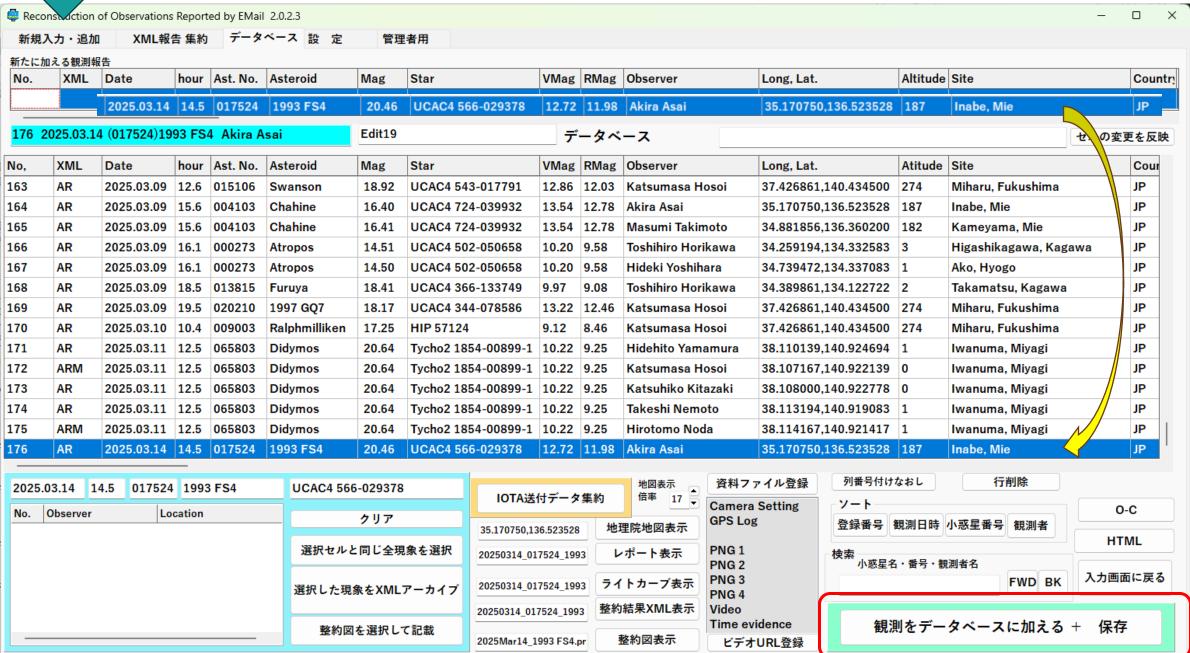


Email from


ボタンをクリックすると...

Limovie が報告作成まで現象時刻を記憶します。

OBS.xml と .dat lightcurve のデータは、 メール文から自動的に読み出され、保存されます。


Email from observer

ROREM

Next process

ROREM データベース に登録・記録されます。

複数の観測を自動的に一つのXML file に集約できます。

TextViewer <MPC>||</MPC> </Astrometry> </Details> <Observations> <Observer> <ID>1|Hiroyuki Watanabe||0|Tarui, Gifu|JP|+136 29 43.6|+35 <Conditions>1|1|5.7||[4.5,6.8:124.0]</Conditions> <D>16 19 21.81|D|0.04||| </D> <R>16 19 25.69|R|0.03||| </R> </Observer> <Observer> <ID>2|Miyoshi Ida||0|Higashiomi, Shiga|JP|+136 6 54.1|+35 <Conditions>1|3|1.5||[1.3,1.6:490.0]</Conditions> <D>16 19 21.9|D|1.5||| </D> <R>16 19 27.5|R|1.0||| </R> </Observer> <Observer> <ID>3|Akira Asai||0|Inabe, Mie|JP|+136 31 24.7|+35 10 14.7| <Conditions>2|1|5.9||[5.6,6.2:253.0]</Conditions> <D>16 19 21.02|D|0.07||| </D> <R>16 19 25.44|R|0.06||| </R> </Observer> <Observer> <ID>4|Masumi Takimoto||0|Kameyama, Mie|JP|+136 21 36.7|+34 <Conditions>||3.7||[3.6,3.8:338.0]</Conditions> <D>16 19 21.45|D|0.12||| </D> <R>16 19 24.82|R|0.11||| </R> </Observer> <Observer> <ID>5|Toshihiro Horikawa||0|Takamatsu, Kagawa|JP|+133 57 26 Predicted Mag drop Set XML緯度並べ替え コピー 保 存 VirtBarCont Edit3

P:\footnote{P:\foo

	338	ARC	2025.08.17	16.4	000778	Theobalda	15.33	UCAC4 348-191089	13.85	13.25	Toshihiro Horikawa
	339	ARC	2025.08.17	16.4	000778	Theobalda	15.33	UCAC4 348-191089	13.85	13.25	Hiroyuki Watanabe
×	340	ARC	2025.08.17	16.4	000778	Theobalda	15.34	5.34 UCAC4 348-191089 13.8		13.25	Akira Asai
	341	ARC	2025.08.17	16.4	000778	Theobalda	15.34	UCAC4 348-191089	13.85	13.25	Masumi Takimoto
	342	ARC	2025.08.17	16.4	000778	Theobalda	15.34	UCAC4 348-191089	13.85	13.25	Miyoshi Ida
	343	A	2025.08.18	11.6	003885	Bogorodskij	17.65	UCAC4 362-079428	12.97	12.05	Toshihiro Horikawa

Email from observer

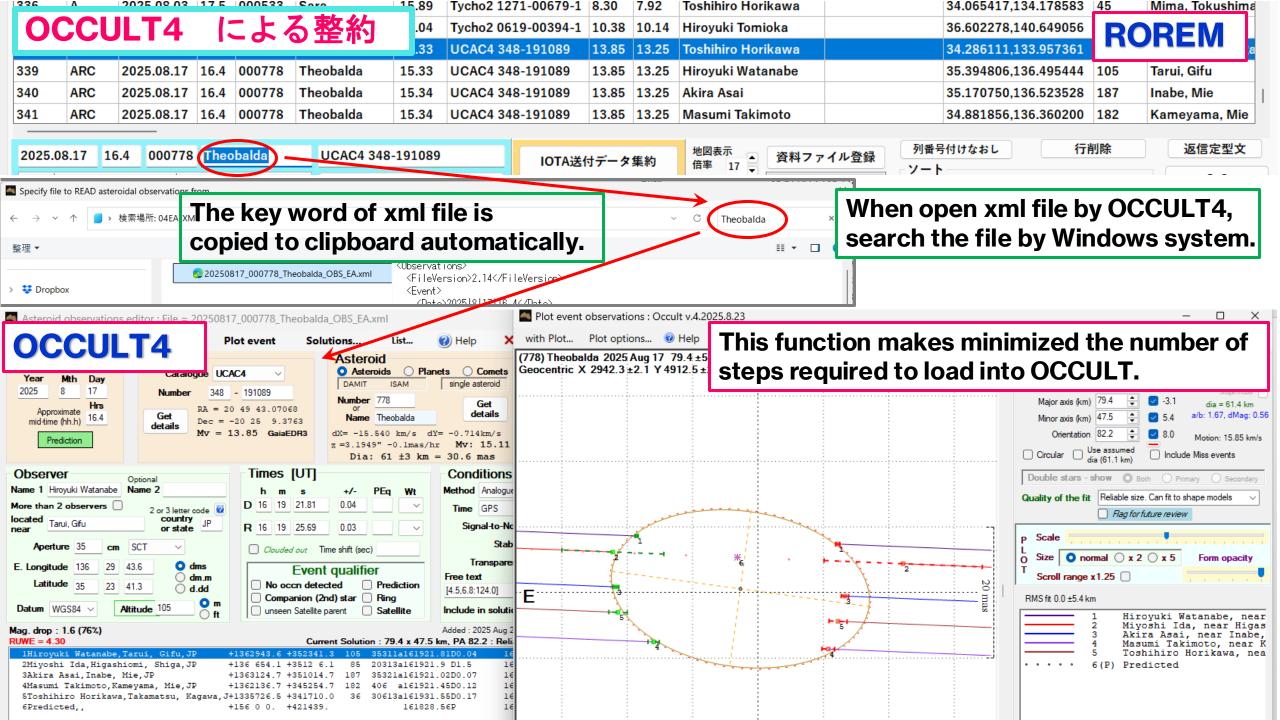
Email from observer

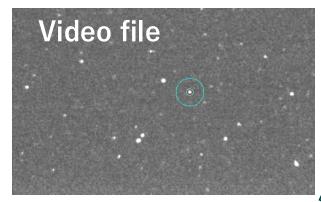
Email from observer

Email from observer

Recorded on ROREM's Database

No.	Observer	Location
338	Toshihiro Horikawa	Takamatsu, Kagawa
339	Hiroyuki Watanabe	Tarui, Gifu
340	Akira Asai	Inabe, Mie
341	Masumi Takimoto	Kameyama, Mie
342	Mivoshi Ida	Higashiomi, Shiga


UCAC4 348-191089

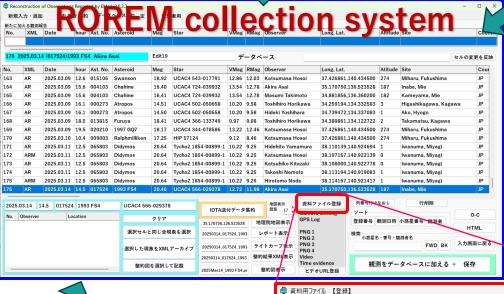

クリア

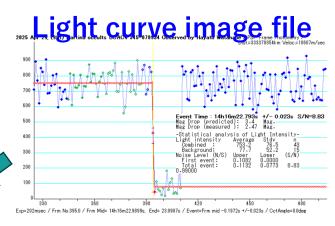
Correct event same as selected record

Marge and archive xml data from selected event

整約図を選択して記載

Camera setting


[ZWO ASI290MM] #Output Format=AVI files (*.avi) #Binning=2 #Capture Area=1520x708 #Colour Space=MONO8 #Temperature=32.8 #High Speed Mode=Off #Frame Rate Limit=Maximum #Gain=494

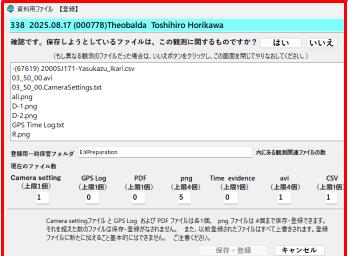

#Exposure=165.0000ms

#Timestamp Frames=On #Brightness=171

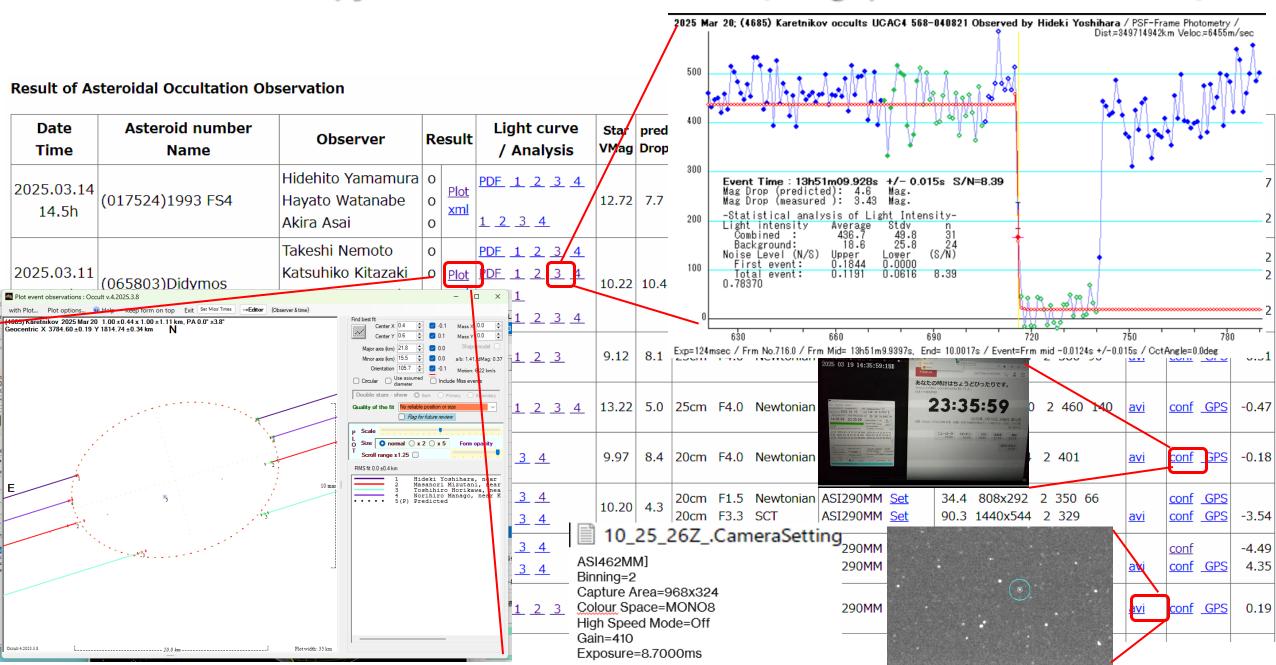
#Notes

CSV measurement result /FObject Object Object Object Object 22 30.3346 30.3733 -30.5 5.675 6.052 22 30.4119 30.4506 594.6 751.9 -16.4 5.675 6.052 6.523 14 22 30.4892 30.5279 59.5 5.675 6.052 22 30.5665 30.6052 114 5.675 6.052 6.523 14 22 30.6438 30.6825 575.6 586.8 -8.5 5.675 6.052 6.523

GPS Log.


HACSTIP Ver. 2.0.0.6 Date: 2025. 08. 24 Global Position Long. = 136° 10' 1.629" E Lat = $35^{\circ} 4' 25.812'' N$ Long (deg), Lat (deg) = 35. 0738367, 136. 1671192Antenna Altitude = 116.3mGeoidal Height = 34.8m

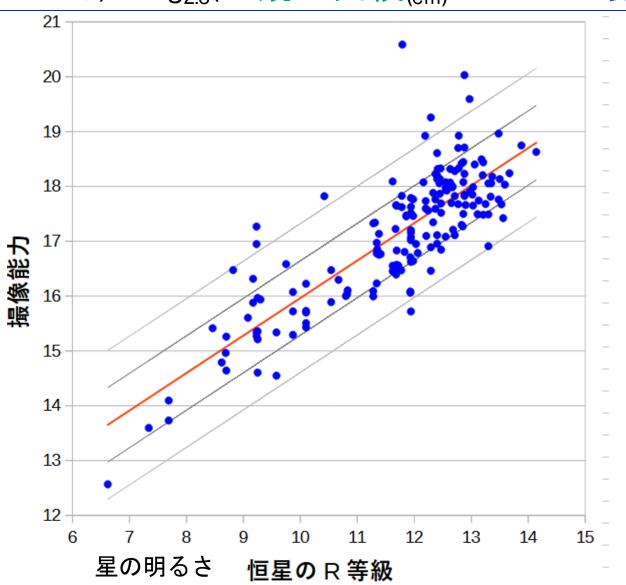
Waves received from 12 Satellites


GPS Time Log: [Time difference (ms)] = [PC Time] - [GPS Time] 0.00 2025-08-25 02:36:59.000 2025-08-25 02:36:59.000 Set PC Time

- 0.00 2025-08-25 02:36:59.999 2025-08-25 02:37:00.000 Set PC Time
- -0.01 2025-08-25 02:37:00.999 2025-08-25 02:37:01.000 Set PC Time

0.00 2025-08-25 02:37:01.999 2025-08-25 02:37:02.000 Set PC Time

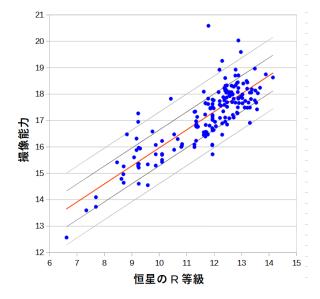
On this web site, you can see various data (image, numerous data etc.) .



観測データ収集の新たな可能性

データはCSV ファイルとしても保存され

→ Excel等でも利用できます。


機器全体の撮像能力(観測可能等級)= log_{2.5}(主鏡の面積_(cm)×フレーム露光時間_(msec)×2^{(ゲイン}/60))

星の等級と望遠鏡の口径をセットすると

R等級

最適なカメラ設定を 計算できます!

必要な撮像能力= 0.6840 × RMag + 9.1248 +/- 0.6781

ゲインからフレーム露光 時間を求める場合

フレーム露光時間からゲ インをを求める場合

露光時間(msec)	100		
	平均	+1σ	-1σ
ゲイン	478.4	532.2	424.6

https://astro-limovie.info/limovie/cmos/

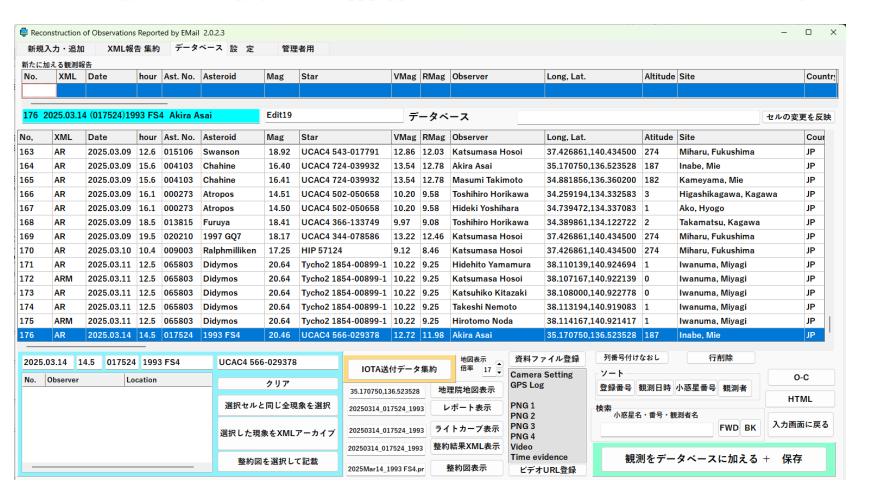
CMOS カメラによる掩蔽観測 資料

<u>ROREMシステムの集計から得られた「最適なカメラ設定」</u>

<u>ROREMシステムを用いたデータアーカイブの公開</u>

<u>PowerGPSによる GT502MGG-N のBaudrateの不揮発設定</u>

Apophis は DESTINY+の最初のフライバイターゲットです。


事前に正確な軌道とサイズを知るための掩蔽観測が必要です。

OCCULTの予報機能を使うと、候補となるたくさんの現象が現れますが、その中から使用機材で有効な観測ができる現象を絞り込む必要があります。

下の表は ROREM で求めた観測条件を用いてリストアップした予報です。

			RUWE	Mag	Mag	Dur.	Uncertainty	Shadow	Distance	Fresnel	Area
				[V]	[R]	(sec)	(sec)	Velocity(m/s)	(km)	Number	
1 2028-01-02	13h 00m - 13h 14m	UTUCAC4 404-000176	0.95	12.2	11.67	0.01	0.04	14454	44101452	0.85	China, Japan
2 2028-01-10	14h 39m - 14h 55m	UTUCAC4 426-001125	1.25	11.4	10.97	0.011	0.04	13905	45447833	0.83	Thai
3 2028-01-10	12h 39m - 12h 52m	UT UCAC4 426-001114	1.1	13.6	12.88	0.011	0.04	13911	45432873	0.83	China
4 2028-01-13	18h 18m - 18h 31m	UT TYC 4681-02316-1	0.85	11.6	11.22	0.011	0.04	13680	46300541	0.81	EU
5 2028-01-14	14h 43m - 14h 56m	UTTYC 4682-00516-1	0.9	12	11.48	0.011	0.05	13621	46569817	0.81	Mid Asia
6 2028-01-20	02h 32m - 02h 46m	UTUCAC4 451-002232	1.2	12.3	11.6	0.011	0.05	13262	48499630	0.77	USA
7 2028-01-26	11h 21m - 11h 37m	UTUCAC4 467-003011	0.95	13.6	12.98	0.012	0.05	12918	51237271	0.73	China, Japan
8 2028-01-26	03h 09m - 03h 25m	UTUCAC4 466-003007	1.1	13.1	12.4	0.012	0.05	12934	51072713	0.73	USA
9 2028-02-04	15h 25m - 15h 42m	UTUCAC4 486-004147	1.2	12.1	11.27	0.012	0.06	12561	55874805	0.67	Thai
10 2028-02-05	05h 13m - 05h 29m	UTUCAC4 487-004365	1.05	13.1	12.44	0.012	0.06	12543	56188960	0.67	USA
11 2028-02-19	21h 40m - 21h 56m	UTUCAC4 512-006229	1.05	12.8	11.94	0.012	0.07	12338	64716039	0.58	EU
12 2028-02-20	05h 13m - 05h 28m	UTUCAC4 512-006280	1.05	13.3	12.55	0.012	0.07	12340	64910516	0.58	USA
13 2028-02-23	00h 35m - 00h 50m	UTUCAC4 516-007323	0.95	11.7	11.07	0.012	0.07	12361	66630892	0.56	South America
14 2028-02-26	11h 10m - 11h 23m	UTUCAC4 520-007868	1	12.5	11.52	0.012	0.07	12408	68755181	0.55	AUS
15 2028-03-11	12h 59m - 13h 15m	UTUCAC4 534-011745	1.1	12.1	11.26	0.012	0.08	12738	77401938	0.48	China
16 2028-03-13	10h 06m - 10h 22m	UTUCAC4 536-013164	1.15	12.6	12.08	0.012	0.08	12796	78538882	0.48	Japan
17 2028-03-13	01h 22m - 01h 34m	UTUCAC4 535-012750	1.1	13.9	13.36	0.012	0.08	12784	78314485	0.48	South America
18 2028-03-16	10h 36m - 10h 52m	UTUCAC4 538-015011	0.85	13.6	12.96	0.012	0.08	12898	80334057	0.47	Japan

これからも ROREM による収集と諸情報の提供を続け、 カメラ設定に役立つ情報もお伝えしていきます。

ご清聴ありがとうございました。